PLTW			DE Blueprint The purpose of this assessment is to ...		Item Type (ex. multiple choice, performance, true false, essay, etc.)	Table of Specifications							
Days \& \% of Coverage		㐋	砢	Knowledge and Skills		Complexity Webb's DOK				$\begin{gathered} \text { Total } \\ \text { \# of } \\ \text { Items } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { \% } \\ \text { Lesson } \end{array}$	\% Unit	
$\begin{array}{\|c\|} 40 \\ 23 \% \end{array}$	20		1	1	K1 - Recognize safety hazards associated with electrical circuits and know the best practices of working safely in an electronics lab environment.						o	\#DIV/o!	\#DIV/o!
	12\%	K2 - Identify the equipment and know how to effectively use the equipment in an electronics lab.								0	\#DIV/o!	\#DIV/o!	
		K_{3} - Know scientific notation, engineering notation, and System International (SI) notation.								0	\#DIV/o!	\#DIV/o!	
		K4 - Know formulas for Ohm's Law, Kirchhoff's Voltage Law, and Kirchhoff's Current Law.								0	\#DIV/0!	\#DIV/0!	
		K_{5} - Know the characteristics of series and parallel sections of a circuit.								0	\#DIV/o!	\#DIV/o!	
		K6 - Identify digital and analog components and recognize the schematic symbol representation.								0	\#DIV/o!	\#DIV/o!	
		K_{7} - Know resistor color codes for labeling values.								0	\#DIV/o!	\#DIV/o!	
		K8 - Know capacitor labeling codes.								0	\#DIV/o!	\#DIV/o!	
		K9 - Know the characteristics of LEDs and how to locate LED datasheets.								0	\#DIV/o!	\#DIV/o!	
		K10 - Recognize combinational logic gates.								0	\#DIV/0!	\#DIV/o!	
		K11-Recognize sequential logic gates.								0	\#DIV/o!	\#DIV/o!	
		K12 - Recognize types of integrated circuits and know where to find manufacturer data sheets.								0	\#DIV/o!	\#DIV/o!	
		K13 - Relate schematic symbols to logic gates and logic gates to schematic symbols.								0	\#DIV/o!	\#DIV/o!	
		K14 - Relate truth tables to logic gates and logic gates to truth tables.								0	\#DIV/o!	\#DIV/o!	
		K15 - Know base 2 and base number systems.								0	\#DIV/o!	\#DIV/o!	
		K16 - Know the best practices of soldering and de-soldering components.								0	\#DIV/o!	\#DIV/o!	
		S1 - Practice proper safety and best practices while working with electronics.								0	\#DIV/o!	\#DIV/o!	
		S2 - Accurately take measurements with a Digital Multimeter (DMM).								0	\#DIV/o!	\#DIV/o!	
		S3 - Express numbers in scientific notation, engineering notation, and System International (SI) notation.								0	\#DIV/o!	\#DIV/o!	
		S4 - Solve for unknown values within circuits (series, parallel, and combination circuits) using Ohm's Law, Kirchhoff's Voltage Law, and Kirchhoff's Current Laws.								o	\#DIV/o!	\#DIV/o!	
		S5 - Utilize Circuit Design Software (CDS) and to validate hand calculations of analog circuit solutions.								0	\#DIV/0!	\#DIV/o!	
		S6 - Identify and describe the function of common components used in electronics.								o	\#DIV/o!	\#DIV/o!	
		S7 - Demonstrate series and parallel circuits on a breadboard.								o	\#DIV/o!	\#DIV/o!	
		S8 - Identify a resistor's nominal value by reading its color code.								0	\#DIV/o!	\#DIV/o!	
		S9 - Measure a resistor's actual value by reading its resistance with a Digital Multimeter (DMM).								0	\#DIV/o!	\#DIV/o!	
		S10 - Identify a capacitor's nominal value by reading its labeled nomenclature.								o	\#DIV/o!	\#DIV/o!	
		S11 - Identify commonly used electronic components given their part number or schematic symbol.								0	\#DIV/o!	\#DIV/o!	
		S12 - Obtain manufacturer datasheets and extract information for components commonly used in digital electronics.								o	\#DIV/o!	\#DIV/o!	
		S13 - Identify various integrated circuit (IC) package styles.								o	\#DIV/o!	\#DIV/o!	
		S14-Recognize the fundamental differences between combinational and sequential logic.								0	\#DIV/o!	\#DIV/o!	
		S15 - Identify and describe the function of AND, OR, and INVERTER gates.								0	\#DIV/o!	\#DIV/o!	
		S16-Convert numbers between the binary and decimal number systems.								o	\#DIV/o!	\#DIV/o!	
		S17-Count from 0-15 in binary.								0	\#DIV/o!	\#DIV/o!	
		S18 - Demonstrate proper soldering/de-soldering techniques to solder and de-solder components on a printed circuit board.								0	\#DIV/o!	\#DIV/o!	
		S19 - Properly tin the tip of a soldering iron and distinguish good solder joints from bad solder joints.								0	\#DIV/o!	\#DIV/o!	
	20 12\%	1		K1 - Know formulas for Ohm's Law, Kirchhoff's Voltage Law, and Kirchhoff's Current Law.						0	\#DIV/o!	\#DIV/o!	
				K2 - Know the characteristics of series, parallel, and combination circuits.						0	\#DIV/o!	\#DIV/o!	
				K_{3} - Identify digital and analog components.						o	\#DIV/o!	\#DIV/o!	
				K4 - Know the characteristics and differences between analog and digital signals and circuits.						0	\#DIV/o!	\#DIV/o!	
				K_{5} - Measure characteristics of a circuit using a DMM.						o	\#DIV/o!	\#DIV/o!	
				K6 - Know the formulas for period, frequency, and duty cycle.						0	\#DIV/o!	\#DIV/o!	
				K_{7} - Relate schematic symbols to logic gates and logic gates to schematic symbols.						0	\#DIV/o!	\#DIV/o!	
				K8 - Relate truth tables to logic gates and logic gates to truth tables.						0	\#DIV/o!	\#DIV/o!	
				K9 - Relate logic expressions to logic gates and logic gates to logic expressions.						0	\#DIV/o!	\#DIV/o!	
				K10 - There is a formal design process for translating a set of design specifications into a functional circuit.						0	\#DIV/o!	\#DIV/o!	
				S1 - Solve for unknown values within circuits (series, parallel, and combination circuits) using Ohm's Law, Kirchhoff's Voltage Law, and Kirchhoff's Current Laws.						0	\#DIV/o!	\#DIV/o!	
				S2 - Utilize Circuit Design Software (CDS) to validate hand calculations to analog circuit solutions.						0	\#DIV/o!	\#DIV/o!	
				S3 - Demonstrate series and parallel circuits on a breadboard.						0	\#DIV/o!	\#DIV/o!	
				S4- Analyze simple analog circuits using a digital multimeter.						0	\#DIV/o!	\#DIV/o!	
				S5 - Analyze and interpret the amplitude, period, frequency, and duty cycle of analog and digital signals based on instrumentation and calculations.						o	\#DIV/o!	\#DIV/o!	
				S6 - Interpret the design of a simple 555 Timer oscillator and how the analog components affect the wave generated.						0	\#DIV/o!	\#DIV/o!	

PLTW				DE Blueprint The purpose of this assessment is to ...		Table of Specifications						
$\begin{gathered} \text { Days \& } \\ \text { \% of } \\ \text { Coverage } \end{gathered}$		\vec{b}	㜢	Knowledge and Skills	Item Type (ex. multiple choice, performance, true false, essay, etc.)	Complexity Webb's DOK				$\begin{gathered} \text { Total } \\ \begin{array}{c} \text { \# of } \\ \text { Items } \end{array} \end{gathered}$	$\begin{gathered} \text { \% } \\ \text { Lesson } \end{gathered}$	\% Unit
Unit Lesson												
				S7 - Utilize the Circuit Design Software (CDS) to simulate and test a complete analog design.						0	\#DIV/o!	\#DIV/o!
				S8 - Use Circuit Design Software (CDS) to simulate and test a simple combinational logic circuit designed with AND, OR, and INVERTER gates.						o	\#DIV/o!	\#DIV/o!
				S9 - Identify and describe the function of a D flip-flop.						${ }^{\circ}$	\#DIV/o!	\#DIV/o!
				S10 - Use Circuit Design Software (CDS) to simulate and test a simple sequential logic circuit design with D flip-flops.						0	\#DIV/o!	\#DIV/o!
				S11 - Utilize the Circuit Design Software (CDS) to simulate and test a complete design containing both combinational and sequential logic.						o	\#Div/o!	\#DIV/o!
$\begin{array}{\|c\|} \hline 51 \\ \mathbf{3 0 \%} \\ \hline \end{array}$	$\begin{gathered} 20 \\ 12 \% \end{gathered}$	2		K1 - Know the formal design process for designing combinational logic circuits.						0	\#DiV/o!	\#DIV/o!
				K2 - Know the truth tables and logic expressions associated with AND gates, OR gates, and INVERTER gates.						0	\#DIV/o!	\#DIV/o!
				K_{3} - Know rules and laws of Boolean Algebra including DeMorgan's Theorems.						0	\#DIV/o!	\#DIV/o!
				K4-Know that a truth table can be interpreted into an algebraic expression representing the output of the circuit.						0	\#DIV/o!	\#DIV/o!
				K_{5} - Know that a simplified logic expression can produce the same outputs with fewer gates.						0	\#DIV/o!	\#DIV/o!
				K6 - Recognize sum-of-product expressions and product-of-sum expressions.						0	\#DIV/o!	\#DIV/o!
				S1 - Translate design specifications into truth tables.						0	\#DiV/o!	\#DIV/o!
				S2 - Generate un-simplified logic expressions from truth tables.						0	\#DIV/o!	\#DIV/o!
				S_{3} - Construct truth tables from logic expressions.						0	\#DiV/o!	\#DIV/o!
				S4 - Formulate simplified logic expressions using the rules and laws of Boolean algebra, including DeMorgan's Theorems.						0	\#DIV/o!	\#DIV/o!
				S_{5} - Analyze AOI (AND/OR/INVERTER) combinational logic circuits to compare their equivalent logic expressions and truth tables.						0	\#DIV/o!	\#DIV/o!
				S6 - Translate a set of design specifications into a functional AOI combinational logic circuit following a formal design process.						0	\#DIV/o!	\#DIV/o!
				S7 - Simulate and prototype AOI logic circuits using Circuit Design Software (CDS) and a Digital Logic Board (DLB).						0	\#DIV/o!	\#DIV/o!
				S8 - Identify the IC number and recognize the related wiring diagram for AOI Logic.						0	\#DIV/o!	\#DIV/o!
	$\begin{aligned} & \hline 14 \\ & \mathbf{8 \%} \end{aligned}$	2		K1 - Identify NAND and NOR gates and recognize them as universal gates.						0	\#DIV/o!	\#DIV/o!
				K2 - Know that universal gates may provide the opportunity for a more efficient design.						0	\#DIV/o!	\#DIV/o!
				K3- Relate AOI logic to NAND only logic.						0	\#DIV/o!	\#DIV/o!
				K4- Relate AOI logic to NOR only logic.						0	\#DIV/o!	\#DIV/o!
				K_{5} - Know the rules associated with the K-Mapping Technique.						0	\#DIV/o!	\#DIV/o!
				S1 - Translate a set of design specifications into a functional NAND or NOR combinational logic circuit following a formal design process.						0	\#DIV/o!	\#DIV/o!
				S2 - Compare and contrast the quality of combinational logic designs implemented with AOI, NAND, and NOR logic gates.						0	\#DIV/o!	\#DIV/o!
				S_{3} - Use Circuit Design Software (CDS) to simulate and prototype NAND and NOR logic circuits.						0	\#DiV/o!	\#DIV/o!
				S_{4} - Use the K-Mapping technique to simplify combinational logic problems containing two, three, and four variables.						0	\#DIV/o!	\#DIV/o!
				S5- Solve K-Maps that contain one or more don't care conditions.						0	\#DiV/o!	\#DIV/o!
				S6 - Use current technology to convert AOI designs to universal gate designs.						0	\#DIV/o!	\#DIV/o!
	$\begin{aligned} & 10 \\ & 6 \% \end{aligned}$	22		K1 - Know the rules governing base 10 number systems.						0	\#DIV/o!	\#DIV/o!
				K2 - Know the rules governing base 8 number systems.						0	\#DIV/o!	\#DIV/o!
				K_{3} - Know the rules governing base 16 number systems.						0	\#DiV/o!	\#DIV/o!
				K4-Know the rules governing two's complement addition.						0	\#DIV/o!	\#DIV/o!
				K_{5} - Recognize a half-adder.						0	\#DIV/o!	\#DIV/o!
				K6 - Recognize a full-adder.						0	\#DIV/o!	\#DIV/o!
				K7- Label the seven segments of a seven segment display.						0	\#DIV/o!	\#DIV/o!
				K8 - Identify Common Cathode and Common Anode Seven Segment Displays and know the characteristics of each.						0	\#DiV/o!	\#DIV/o!
				K9 - Know the formal design process used to translate design specifications to a functional combinational logic circuit.						0	\#DIV/o!	\#DIV/o!
				K10 - Recognize a multiplexer and de-multiplexer.						0	\#DiV/o!	\#DIV/o!
				K11 - Describe the benefits of using a multiplexer and de-multiplexer in a circuit design.						0	\#DIV/o!	\#DIV/o!
				S1- Convert numbers between the hexadecimal or octal number systems and the decimal number system.						0	\#DIV/o!	\#DIV/o!
				S2 - Use a seven-segment display in a combinational logic design to display alpha/numeric values.						0	\#DIV/o!	\#DIV/o!
				S3-Select the correct current limiting resistor and properly wire both common cathode and common anode seven-segment displays.						0	\#DiV/o!	\#DIV/o!
				S4 - Design binary half-adders and full-adders using XOR and XNOR gates.						0	\#DIV/o!	\#DIV/o!
				S_{5} - Use the two's complement process to add and subtract binary numbers.						0	\#DIV/o!	\#DIV/o!
				S6 - Describe how the addition of two binary numbers of any bit length can be accomplished by cascading one half-adder with one or more full adders.						o	\#DIV/o!	\#DIV/o!
				S7 - Design and implement binary adders using SSI and MSI ICs.						0	\#DIV/o!	\#DIV/o!
				S8 - Use a formal design process to translate a set of design specifications for a design containing multiple outputs into a functional combinational logic circuit.						o	\#DIV/o!	\#DIV/o!
				S9 - Design AOI, NAND, \& NOR solutions for a logic expression and select the solution that uses the least number of ICs to implement.						o	\#DIV/o!	\#DIV/o!

