Flip-Flop Applications: Shift Registers Using PLTW S7

INTRODUCTION

In the previous activity you simulated an event detector circuit using a phototransistor and a D flip-flop. $\ddot{\nabla}_{\text {in }}$ In this activity we will use a shift register \ddot{H}° as an event detector.

In this design, the output is triggered only when a specific binary number is entered. You will create a 4-bit shift register and design the event output to trigger on the number:
$1101_{2}=13_{10}=d_{16}$

EQUIPMENT

- Circuit Design Software (CDS)
- Digital MiniSystem (DMS)
- PLTW S7 FPGA Module
- \#22-gauge solid wire

Procedure

Simulation (Design Mode)

1 Using the Design Mode of the CDS, enter the 4-bit shift register circuit.

2 Start the simulation and verify that the circuit is working as expected by trying various input sequences and confirming that the sequence $1,1,0,1$ is detected while others are not. If the circuit is not working as expected, review your circuit and make necessary corrections.

3 Make the necessary modifications to the circuit so that it will detect the input sequence $0,1,1,0$. Simulate this new circuit and verify that it is working as designed. If not, make necessary corrections.

Simulation (PLD Mode)
(4) Using the PLD Mode of the CDS, enter the 4-bit shift register circuit.

5 Start the simulation in PLD Mode and verify that the circuit is working as expected by trying various input sequences and confirming that the sequence $1,1,0,1$ is detected while others are not. If the circuit is not working as expected, review your circuit and make necessary corrections.

6 Make the necessary modification to the circuit so that it will detect the input sequence $0,1,1,0$. Simulate this new circuit and verify that it is working as designed. If not, make necessary corrections.

Export to PLD (PLD Mode)

7 Assign the inputs/outputs in PLD Mode and wire the circuit using the DLB or DMS.
a. Assign Data In to a Slide Switch.
b. Assign Clock to a Push Button.
c. Assign 4 LEDs of the same color in a row. (D0-D3:DMS) or (LD0-LD3:

DLB)

d. Assign Output \mathbf{Z} to any other LED.

8 Verify the $(0,1,1,0)$ design works on your DMS or DLB.

CONCLUSION

1 If looking at only the four probes (D0, D1, D2, D3), you might have been confused as to when you see the input number $1,1,0,1$ or $0,1,1,0$. Why?

