
PLTW ENGINEERING

Activity 4.1.2

State Machines: Phone Number Using
PLTW S7

The block diagram below is for a simple state machine that counts out the

last four digits of a phone number. This design has two inputs and seven

outputs.

In addition to the clock input required for all state machines, this design’s

second input is Enable (EN). Whenever the EN input is a logic (1), the outputs will

continuously cycle through the four digits of the phone number. Whenever the

EN input is a logic (0), the outputs will hold at their current values.

The three (or four) outputs from the state machine are the binary encoding of

the phone number digits. You will only need the fourth output if the phone

number contains an 8 (1000) or a 9 (1001).

The binary output of the state machine connects to a decoder and a seven-

segment display, which will display the decimal equivalent of each binary

number.

In this activity you will design, simulate, and program (to the FPGA chip on the

PLTW S7) a state machine that counts out the last four digits of your phone

number.

INTRODUCTION

EQUIPMENT

Circuit Design Software (CDS)

Digital MiniSystem (DMS)

myDAQ

myDigital Protoboard

PLTW S7 FPGA Module

#22-gauge solid wire

RESOURCES

State Machine Design

https://pltw.read.inkling.com/a/b/495d2ced70ec40e9b5d51a1fe6a96b07/p/5d2f5c2914ef4a4db70dfefc63f7826d

Procedure

Using your phone number, draw the state graph diagram for your state

machine design.

1

Determine the number of state variables required for your design.

Assign these variables to the state graph you created in step 1.

2

Binary encode the outputs for each of the states in the state graph.

Remember, only designs with phone numbers containing an 8 or a 9

require four outputs; all others require only three outputs.

3

Using the completed state graph from step 3, create the state transition

table for your design. Assume that this design will use D flip-flops.

4

Using the completed state transition table from step 4, write the logic

expressions for the next state variables and the three (or four) outputs. Be

sure to simplify the expression using Boolean algebra or the K-Mapping

technique.

5

Using the simplified design equations, sketch your state machine. Your

implementation may use any form of combinational logic, but the

sequential logic must be limited to D flip-flops.

6

Connect the output from the state machine design to the DEC_BCD_7

component. If there are only three outputs from the state machine, tie the

fourth input on the DEC_BCD_7 to a digital low.

7

Using the CDS in PLD Design Mode, enter and test your design. Use the

interactive digital logic component for the input EN, and use a probe for

the outputs. You may also consider connecting probes to the Q outputs of

the flip-flop and to the outputs of the state machine. This will make it much

easier to test the design.

8

Start the simulator and verify that the circuit is working as expected. If the

results are not what you expected, review your circuit and make any

necessary corrections. You may need to adjust the simulation speed to

observe the outputs changing.

9

Prepare your design for transfer to the board:10

a. Map the design’s three (or four) outputs to the LEDs on the PLD

Module. LED0 through LED2 (LED3).

b. Map the state variables (the flip-flop Qs) to LEDs on the protoboard.

These signals will be useful in the event that your design must be

debugged.

c. Map the design’s Enable (EN) input to any of the DMS push-button

switches.

d. Map the output from the seven-segment decoder to one of the DMS

seven-segment displays.

e. Finally, map the design’s clock input to any one of the PIO16s. Using a

jumper wire, connect this PIO16 pin to the DIO2 of the DMS.

Complete the implementation by downloading the design file to the PLD.

On the DMS, verify that the circuit is working as expected. If it is not, debug

the design to determine your design error. Make the necessary

corrections.

11

Proceed to project

Going Further (Optional)

CONCLUSION

The state machine design in this activity has four states and thus

requires two state variables. If a design required eight states, how many

state variables would be required?

1

What about sixteen states?

What is the relationship between the number of states and the number

of state variables?

2

If you simplified the logic expression for the three (or four) outputs

correctly, the final expressions were not a function of the input EN. It will

ALWAYS be the case that the outputs are not a function of the inputs.

Why?

3

List three advantages of implementing sequential logic designs with

programmable logic versus traditional discrete logic design (AOI, NAND,

or NOR logic).

4

The state machine design in this activity used D flip-flops. This type of

flip-flop was selected because of its ease of design; however, J/K flip-

flops could have been used. Redo your state machine design using J/K

flip-flops or a NAND only approach. Can you add a new feature or option

to this design that would be beneficial?

5

