
PLTW ENGINEERING

Activity 4.2.2

Introduction to Microcontrollers

Until now, your selection of input devices and output devices has been limited

to the sensors and human input devices available in your classroom. In today’s

world of electronics, there are a tremendous number of other devices you could

use in your designs.

In this activity you will create your first programs (sketches) to control

systems with unique sensors, human input controls, motors, and servos that

you may not have used previously. The ATmega328 microcontroller found

on the Arduino�™ UNO Microcontroller Board will be used to explore these

controls and inputs.

Programming languages have their own grammar called “syntax”. Programs

written with the Ardiuno software are called Sketches. A Sketch (program

written with Arduino) will contain: a title, constants , variables , setup()

functions, and loop() functions.

If the syntax of a language is not followed, the program will not compile

correctly. This means that no executable code will be produced. Fortunately, the

Arduino integrated development environment (IDE) will provide error messages

that will help you fix your “bad grammar”… called “syntax errors”. One of the

most common syntax errors that students make is forgetting that lines of code

need to end with a semicolon.

Structure of a Sketch (Program)

The “Blink” program used to test your Arduino is shown below to illustrate the

parts of a program (sketch).

INTRODUCTION

/*
Title: Description and comments.
Blink: This example make the LED at pin 13 blink.
This example code is in the public domain.
 */
// Constants: Constants won’t change. They’re used here to set the pin
const int ledPin = 13; // constant ledPin assigned to pin 13
// Variables: Variables will change. They’re used do assign variable n
 // there are no variables in this exampl
// Setup: The setup routine runs once when you start or press reset:
void setup() { // put your setup code here, to run on
 pinMode(ledPin, OUTPUT); // initialize the LED pin as an output
}
// Loop: The loop routine runs over and over again forever:
void loop() { // put your main code here, to run rep
 digitalWrite(ledPin, HIGH); // turn the LED on (HIGH is the voltag
 delay(1000); // wait for one second
 digitalWrite(ledPin, LOW); // turn the LED off by making the volt
 delay(1000); // wait for one second
}

EQUIPMENT

Parallax® student DE bundle with

Arduino™

Arduino™ UNO Microcontroller

Board

PIR Sensor (Passive Infra-Red)

Parallax® 2-Axis Joystick

Arduino™ IDE Software

Breadboard

#22-gauge solid wire

Resistors: 220 Ω; 10 kΩ

LED

Push-button or VEX bumper switch

VEX potentiometer

Procedure

Sketch 1: “Blink”

Sketch 2: “AltBlink”

Open the Arduino software and create the “Blink” sketch.1

Title the project and add a description. Save.2

Define constant integer, named “ledPin”, assigned to pin 13.3

void setup()4

Add a pinMode function so that variable ledPin is an OUTPUT.

void loop()5

Add a digitalWrite function to make ledPin HIGH for delay 1000 ms.

Add a digitalWrite function to make ledPin LOW for delay 1000 ms.

Save the code as “Blink”. Have your instructor verify that the circuit works

as expected. The LED on the Arduino (pin 13) should be blinking.

6

Create the circuit “AltBlink” using:7

Sketch 3: “Pushbutton”

This sketch reads a VEX bumper switch (or push-button) and turns on an LED.

Note: If a VEX bumper switch is not available, you may use a push-button on

your Digital MiniSystem or a simple push-button on a breadboard as shown

below.

AltBlink Circuit

An Arduino Microcontroller Board

An LED

220 Ω resistor

Modify the “Blink” code to create a new sketch called “AltBlink”.8

With LED A defined as the resistor on the Arduino, and LED B defined as

the LED on the breadboard, make the two LEDs blink in an alternating

pattern.

9

LED A (on Arduino) is “off” when LED B (on breadboard) is “on”.

LED A (on Arduino) is “on” when LED B (on breadboard) is “off”.

Circuit 3 with pushbutton

Circuit 3 with VEX bumper switch

Using the Arduino, an LED, a VEX bumper switch, and a 10 kΩ resistor,

create the circuit.

10

Open the Arduino software and create the bare minimum code.11

Title the project and add a description. Save.12

Constants13

Define constant integer, named buttonPin, assigned to pin 12.

Define constant integer, named ledPin, assigned to pin 2.

Define variable int buttonState = 0;14

void setup()15

Add a pinMode function so that variable ledPin is an OUTPUT.

Add a pinMode function so that variable buttonPin is an INPUT.

void loop()16

Read the input pin buttonState = digitalRead (buttonPin);

If (buttonState == HIGH), turn on the LED.

If (buttonState == LOW), turn off the LED.

Have your instructor verify that the circuit works as expected.17

Sketch 4: “DigitalReadSerial”

This sketch reads a push-button and prints the outputs to the serial monitor. The

wiring for this circuit is the same, and this new sketch can be created by modifying

Sketch 2 “Pushbutton”.

Sketch 5: “DigitalReadSerialLED”

Open the Arduino software and create the bare minimum code.18

Title the project and add a description. Save.19

Define constant integer, named buttonPin, assigned to pin 12.20

Define variable int buttonState = 0;21

void setup()22

Add Serial.begin (9600); to initialize serial communication at 9600 b/s.

Add pinMode function so that variable buttonPin is an INPUT.

void loop()23

a. Read the input pin.

buttonState = digitalRead (buttonPin);

b. Print the state of the button to the monitor.

Serial.println (buttonState);

c. Add delay(1); so you can see the change when it is writing to the

monitor.

Open the serial monitor (Select Tools then Serial Monitor) then have your

instructor verify that the circuit works as expected.

24

From what you have learned create a new program

“DigitalReadSerialLED” that that prints the digital output of a pushbutton

to the Arduino serial monitor and has an LED indicator showing when the

signal is high.

25

Sketch 5: “PIRDigitalReadSerial”

Input Sensor: PIR Sensor

The Passive Infra-Red (PIR) Sensor is a pyroelectric device that detects motion by

measuring changes in the infrared (heat) levels emitted by surrounding objects.

This motion can be detected by checking for a sudden change in the surrounding

IR patterns. When motion is detected, the PIR sensor outputs a high signal on its

output pin. This logic signal can be read by a microcontroller or used to drive a

transistor to switch a higher current load.

The PIR sensor has the following features:

Wire the PIR Sensor and Test

Have your instructor verify that the circuit works as expected.26

Detection range up to 20 feet away

Single bit output

Jumper selects single or continuous trigger output mode

Wire in the following configuration. If motion is detected, the PIR dome

lights up, sending a signal out to the LED wired to pin 13 on the Arduino. To

test, make sure the sensor is in a location with no movement.

27

Sketch 6: “AnalogReadSerial”

A potentiometer is a simple mechanical device that provides a varying amount of

resistance when its shaft is turned. By passing voltage through a potentiometer and

into an analog input on your Arduino, it is possible to measure the amount of

resistance produced by a potentiometer (referred to as “pot” in notation) as an

analog value. In this example, you will monitor the state of your potentiometer after

establishing serial communication between your Arduino and your computer. This

example is public domain; for more support, you can find this example among those

on the Arduino website.

Using what you have learned, create a program (sketch) that will detect

motion and print the state of the sensor to the Arduino Serial Monitor.

28

Have your instructor verify that the circuit works as expected.29

VEX Potentiometer with PWM Potentiometer

Using the Arduino and a VEX and potentiometer, create the circuit.30

Open the Arduino software and create the bare minimum code.31

Title the project and add a description. Save.32

Define constant integer, named potPin, assigned to pin A0.33

Define variable int potValue = analogRead (potPin);34

void setup()35

Add Serial.begin at 9600 b/s to initialize serial communication.

void loop()36

Read the input on the analog pin.

potValue = analogRead (A0);

Print the state of the potentiometer to the monitor.

Serial.println (potValue);

Sketch 7: “Joystick”

The 2-Axis Joystick contains two independent potentiometers (one per axis) for

reporting the joystick’s position, with wiring options for voltage or resistance

outputs.

Add delay(1); so you can see the change when it is writing to the

monitor.

Have your instructor verify that the circuit works as expected.37

Based on what you learned in Sketch 6 “AnalogReadSerial”, create a new

sketch that will read the analog value for each axis and print those values

to the Arduino serial monitor.

38

To distinguish which value you are reading, you will want to add a:39

Libraries and Communities

It is good practice to keep all your programs (sketches) organized so that you can

use/build upon them in the future. Make sure you have captured the seven

introductory programs and turned them in to your instructor in the format your

instructor requested.

Because Arduino is an open-source community, there are hundreds of examples of

code online you can use for your own projects.

Serial.print("Up/Down value = ");

// words in quotes print on the serial monitor

Serial.print("Left/Right value = ");

// words in quotes print on the serial monitor

When the joystick is sitting in the middle, what are the values roughly?40

When you move the joystick, what are roughly the maximum value and the

minimum value you see?

41

What do you think this range should be exactly? (Hint: Think base 2

numbers.)

42

Have your instructor verify that the circuit works as expected.43

Proceed to next activity

CONCLUSION

Looking around the room or building you are in, identify 3–5 devices

that most likely have a microcontroller embedded in them.

1

What are some of the major parts to a program or sketch?2

Without worrying about syntax, what conditional statement would you

write to create the following outputs on the serial monitor based on the

inputs of the 2-Axis Joystick.

3

