
PLTW ENGINEERING

Activity 4.2.3

Pulse Width Modulation (PWM)

Pulse Width Modulations (PWM) is a way of digitally encoding analog signal

levels by controlling the duty cycle. In this way, a digital microcontroller can

send varying voltages to simulate an analog signal to components such as a

motor. This allows the motor to change speed smoothly instead of only

operating a set speeds.

Servos are designed to receive PWM signal and translate the signal into a

speed or a position. In this activity you will explore controlling motors and

servos with PWM signals. We will also take a look at accelerometers that

create PWM signals that a microcontroller can interpret into acceleration along

an axis.

Microcontrollers can also receive PWM signals from input devices such as

accelerometers.

INTRODUCTION

Input Device: Dual-axis Accelerometer

The Memsic 2125 is a two-axis accelerometer capable of measuring

acceleration up to plus or minus 2 g. It has a simple digital interface: two pins

(one for each axis) emit pulses whose duration corresponds to the acceleration

of that axis. By using the Arduino’s pulseIn() function to measure the length

of that pulse in microseconds, you can determine the rate of acceleration and

use that data for your purposes.

Accelerometer Features

EQUIPMENT

Parallax® student DE bundle with Arduino

Arduino™ UNO Microcontroller Board

Memsic® 2125 Dual-axis Accelerometer

Parallax® 2-Axis Joystick

Arduino™ IDE Software

Breadboard

#22-gauge solid wire

VEX® potentiometer

VEX® 393 Motor with Motor Controller 29

Measures ±3 g on each axis.

Simple pulse output of g-force for each axis is easy for almost any

microcontroller to read.

Communication Protocol

Each axis has a 100 Hz Pulse Width Modulated (PWM) duty cycle output in

which acceleration is proportional to the ratio tHx/Tx.

In practice, we have found that Tx is consistent, so reliable results can be

achieved by measuring only the duration of tHx. With 5 V, 50% duty cycle

corresponds to 0 g, but this will vary with each individual unit within a range of

48.7% to 51.3%.

Analog output of temperature (Tout pin) allows for fine-tuning of advanced

applications.

Low current at 3.3 or 5 V operation (less than 4 mA at 5 VDC) puts low

demand on your system.

RESOURCES

PWM: Pulse Width Modulation

https://pltw.read.inkling.com/a/b/495d2ced70ec40e9b5d51a1fe6a96b07/p/597308d02bc747f8a80b104cc610df91

Procedure

Sketch 1: “Two Axis Accelerometer”

In the following example code you will see:

Constants

Setup()

Loop()

Wiring Diagram: Memsic 2125 Dual-axis Accelerometer

The X-axis assigned to pin 9 and Y-Axis assigned to pin 10.

The serial communication is initialized at 9600 b/s.

The functions of the XPin and Ypin are defined as INPUTS.

Variables are defined as pulseX and pulseY. These will be the values of the

pulse widths tHx.

Variables are defined as accelerationX and accelerationY. These will be the

resulting calculated accelerations.

The pulseIn HIGH for both PulseX and PulseY will be read.

The pulseIn will be translated into accelerations according to the following

algorithms:

Sketch 1: “Two Axis Accelerometer”

Example Code

accelerationX = ((pulseX / 10) - 500) * 8;

accelerationY = ((pulseY / 10) - 500) * 8;

AccelerationX and AccelerationY are printed to the serial monitor separated by

a tab character.

/*
 Memsic2125 - Read the Memsic 2125 two-axis accelerometer. Pulses output
 (1/1000) of earth’s gravity) and prints them over the serial connection
 http://www.arduino.cc/en/Tutorial/Memsic2125
 created 6 Nov 2008 by David A. Mellis modified 30 Aug 2011 by Tom Igoe
 This example code is in the public domain.
 */

// Constants: Constants won’t change. They’re used here to set the pin num
const int xPin = 9; // X output of the acceler
const int yPin = 10; // Y output of the

// Variables: Variables will change. They’re used do assign variable names
 // the variables are defined in the
// Setup: The setup routine runs once when you start or press reset:
void setup() {
 Serial.begin(9600); // initialize s
 pinMode(xPin, INPUT); // initialize the pins con
 pinMode(yPin, INPUT);
}

// Loop: The loop routine runs over and over again forever:
void loop() {
 int pulseX, pulseY; // variables to re
 int accelerationX, accelerationY; // variables to contain th

 pulseX = pulseIn(xPin,HIGH); // read pulse from x- and
 pulseY = pulseIn(yPin,HIGH);
 // convert the pulse width into acceleration
 // accelerationX and accelerationY are in milli-g’s
 // earth’s gravity is 1000 milli-g's, or 1g
 accelerationX = ((pulseX / 10) - 500) * 8;
 accelerationY = ((pulseY / 10) - 500) * 8;

 Serial.print(accelerationX); // print the acceleration
 Serial.print("\t"); // print a tab cha
 Serial.print(accelerationY);
 Serial.println();

 delay(100);
 }

Using the Arduino and a Memsic 2125 Dual-axis Accelerometer, create the

circuit.

1

Open the Arduino software and copy/paste the example “Two Axis

Accelerometer” into a new sketch. Save.

2

Title the project and add a description.3

Upload the program and open the serial monitor. With the breadboard

on a flat surface, determine:

4

a. What values to you read for the x-axis?

b. What values to you read for the y-axis?

Two Axis Accelerometer

Pick up the breadboard while keeping it parallel to the floor. Slowly rotate

the board on the y-axis (part of the board farthest from you is down; part of

the board from nearest you is up). Then slowly rotate the board in the

opposite direction around the y-axis. Describe how the motion relates to

the values you see on the Arduino serial monitor.

5

Slowly rotate the board on the x-axis (left part of the board is down; right

part of the board is up). Then slowly rotate the board in the opposite

direction around the x-axis. Describe how the motion relates to the values

you see on the Arduino serial monitor.

6

Have your instructor verify that the circuit works as expected.7

Output Device: VEX 393 Motor with Motor Controller 29

With the VEX 393 Motor with Motor Controller 29, you can control the position of

the motor or the speed of the motor by sending a PWM signal to the Motor

Controller 29 (which controls the motor). There are a few ways to do this:

Sketch 2 “ServoPot”

Non-continuous rotation servos are usually looking for values that correspond

to an angle (0–180). This makes it easy to program a servo to move to a

position.

For continuous rotation servos (VEX 393 Motor with Motor Controller 29), the

Arduino libraries allow you to translate this range of (0–180) into directional

motion.

90 degrees: stop motor

<90 degrees: motor forward

>90 degrees: motor reverse

VEX Potentiometer with PWM Potentiometer

Map

/*
 ServoPot: Controlling a servo motor using a potentiometer (variable resis
 Reads an analog input on pin A0 and moves a VEX 393 2-wire motor with a M
 With the sketch uploaded, open the serial monitor to see the values. (Too
 This example code is in the public domain.
 */

#include <Servo.h>
Servo myservo; // create servo object to control
// Constants: Constants won’t change. They’re used here to set pin numbers
int potpin = A0; // analog pin used to connect the

 // the servo is assigned to pin (6)

// Variables: variables will change:
int val; // variable to read the value from t

void setup()

{
 myservo.attach(6); // attaches the servo on pin 6 to t
 Serial.begin(9600); // initialize serial communication
}

void loop()
{
val = analogRead(potpin); // reads the value of the potentiomet
val = map(val, 0, 1023, 40, 130); // scale it to use it with the servo
myservo.write(val); // sets the servo position according
Serial.println(val); // print out the value between 0 and
delay(15); // waits for the servo to get there
}

Using the Arduino and a VEX 393 Motor with Motor Controller 29, create

the circuit.

8

Open the Arduino software and copy/paste the example ServoPot into a

new sketch. Save.

9

Title the project and add a description.10

Map allows you to translate one scale into another. Examples:

Pulse Width Modulation

Possibly a better way to control the motor would be to abandon the (0–180) scale

(since we are not trying to use the servo to set a position anyway). Remember that

the motor controller 29 is translating a motor speed and direction based on the

pulse duration coming from the microcontroller.

Sketch 3 “microServoPot”

Example Code

val = map(val, 0, 255, 0, 180); // converts (0-255) scale
val = map(val, 0, 1023, 0, 180); // converts (0-1023) scale

Upload the program and open the serial monitor. Rotate the potentiometer

and note how the motor reacts.

11

The motor most likely does not respond the way that you want. The range

that translates into the motor speed is actually a much smaller range than

(0–180). Modify the code so that the potentiometer controls the speed and

direction over a much wider range of motion for the potentiometer.

12

PWM Input of 1.5 ms (1500 μs): stop motor

PWM Input of 1 ms (1000 μs): motor forward

PWM Input of 2 ms (2000 μs): motor reverse

/*
microServoPot: Controlling a servo motor using a potentiometer (variable r
Reads an analog input on pin A0 and moves a VEX 393 2-wire motor with a Mo
With the sketch uploaded, open the serial monitor to see the values. (Tool
This example code is in the public domain.
*/
#include <Servo.h>
Servo myservo; // create servo object to co
int potpin = A0; // analog pin used to conn
int val; // variable to read the va
void setup()
{
 myservo.attach(6); // attaches the servo on p
 myservo.writeMicroseconds(1500); // set servo to mid-point
 Serial.begin(9600); // initialize serial commu
}
void loop()
{
 val = analogRead(potpin); // reads the value of the potentio
 val = map(val, 0, 1023, 1000, 2000); // scale it to use it with the ser
 myservo.writeMicroseconds(val); // sets the servo position accordi
 Serial.println(val); // print out the value bet
 delay(15); // waits for the servo to
}

Open the Arduino software and copy/paste the example “microServoPot”

into a new sketch.

13

Title the project and add a description. Save.14

Upload the program and open the serial monitor. Rotate the potentiometer

and note how the motor reacts.

15

Have your instructor verify that the circuit works as expected.16

Proceed to problem

Imagine a transportation device that consists of two motors and an

accelerometer. By leaning forward on the platform, the vehicle moves forward.

By leaning back, the vehicle move backwards.

CONCLUSION

Create a demonstration using the accelerometer and a motor to

demonstrate how this might work.

1

Have your instructor verify that the circuit works as expected and submit

a copy of your program.

2

